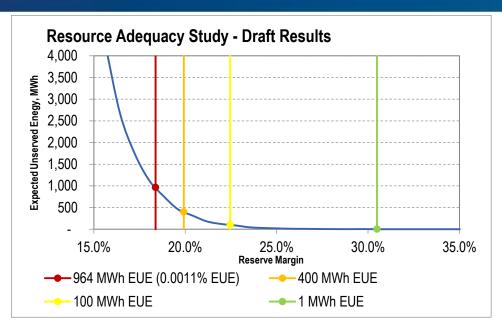


Technical Working Group #3: Demand Curve Shape Analysis

May 04, 2018

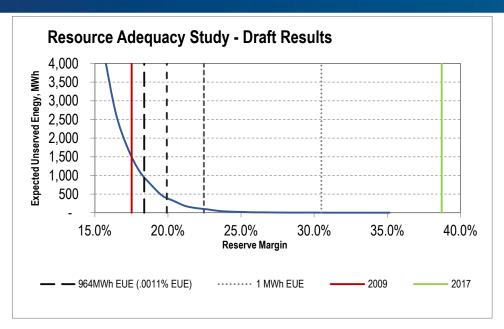
Intent

- Develop a shared understanding of the rationale for the proposed demand curve shape
- Provide further explanation as to why the demand curve is offset/right shifted at 1.0 x Net CONE


Outline

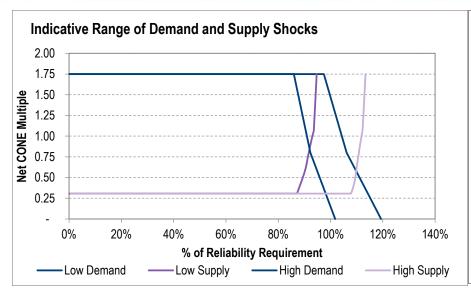
- Resource Adequacy Considerations
- Demand Curve Performance
 - Desired characteristics
 - Simulation results
- Test specific shapes
 - Shortcomings of vertical curve, deeply convex curve
 - Reasoning for selecting proposed curve
 - Reasoning for right shifting the curve

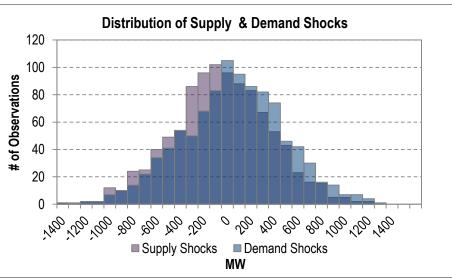
Resource Adequacy Study Draft Results



- Expected Unserved Energy (EUE) is measured in MWh at various Reserve Margin levels
- EUE increases exponentially as Reserve Margin declines

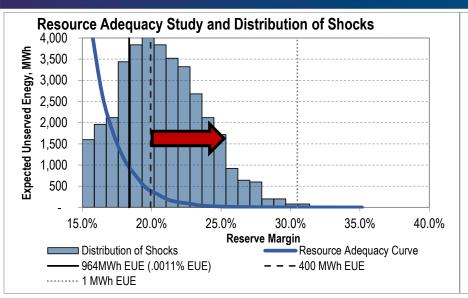
Resource Adequacy - Historical

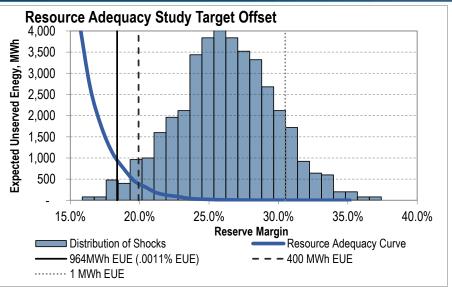




- The historical range for resource adequacy has been 17.5% to 38.7% reserve margin between 2008 and 2017
- The range of the proposed demand curve is between 18.7% and 30.5%, within the historical reliability range over the past decade

Supply & Demand Shocks





- Supply shocks are based on historical retirements and additions
- Demand shocks are based on load forecast errors
- Demand and supply shocks follow normal distributions
- These shocks are used in the Monte Carlo simulation to evaluate average performance of demand curves

Resource Adequacy – Supply Shocks and Target Offset

- Expected unserved energy grows exponential when supply is scarce
- The distribution of shocks is approximately normal
- As a result, a demand curve with the target set at the target reserve margin of 400MWh EUE and 1X Net CONE will not achieve 400MWh EUE on average
 - A target set at 400 MWh EUE would achieve 2400 MWh EUE on average
- The asymmetry of the Resource Adequacy curve requires an offset of approximately 5% to achieve the resource adequacy target on average

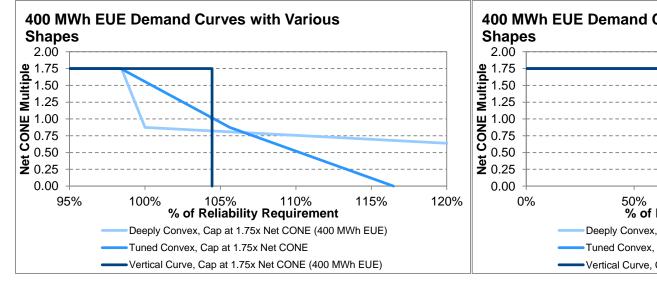
Resource Adequacy Target

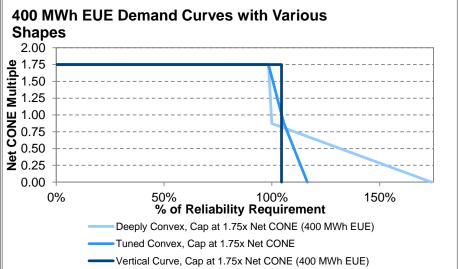
- The Government has provided a minimum reliability standard of 0.0011% unserved energy
 - This equates to a minimum of approximately 964MWh EUE in the reference year
- A target level has not yet been defined, but a range of 100MWh EUE to 400 MWh EUE has been tested

Select Demand Curve Evaluations

Demand Curve Performance

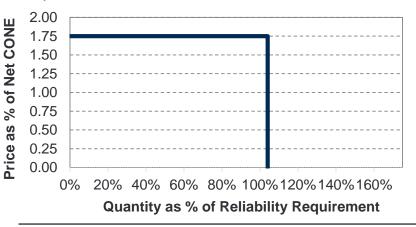
- In line with the Demand Curve Principles developed in SAM 3.0, a demand curve can be considered to perform well if it:
 - ☑ Can accommodate shocks in supply and demand
 - ☑ Performs consistently to a reliability target, and typically above the minimum reliability standard
 - ☑ Accommodates a wide range of possible outcomes, with changes in supply, allowing for a well functioning and competitive market
 - ☑ Minimizes the scope of market power exercise
 - ☑ Provides adequate revenue to incent entry and exit when required i.e. leads to the 'right' level of capacity

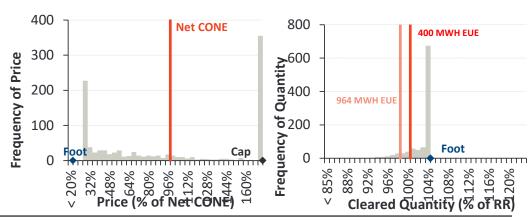

Demand Curve Evaluation



- Market Conditions are simulated using a Monte Carlo simulation model
 - Model solves to an average price of net cone
 - Tests the impacts of supply/demand shocks on price and reliability outcomes under various demand curves
- Key 'characteristics' are evaluated to assess if the curve is meeting the performance requirements
 - Price Volatility
 - Cleared capacity
 - Average reliability, and frequency

Selected Curves for Review



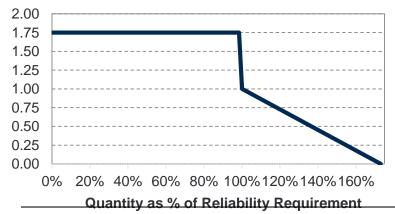

- Several shapes of downward sloping demand curves were tested to reveal their merits and shortfalls
- Vertical, Deeply Convex, and the CMD1.0 Proposed Curve are evaluated
- Each of these curves performs to the 400 MWh EUE reliability level on average over 1,000 simulations
 - Proposed Curve with 100 MWh EUE also tested
- Each curve maintains a price cap of 1.75X Net CONE

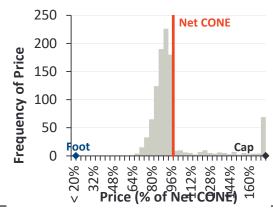
Vertical Curve

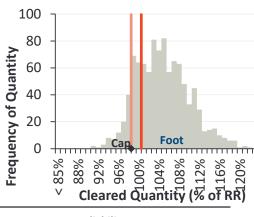
Vertical Curve, Cap at 1.75x Net CONE (400 MWh EUE)

		Price					Reliab		
	Average	Standard	Frequency	Average	Average	Average Quantity	Average Excess	Average	Frequency
		Deviation	at Cap	EUE	LOLH	as % of	(Deficit) Above	Uncleared	Below
						Rel. Req.	Rel. Req.	Supply	Rel. Req.
Demand Curve	(\$/MW-d)	(\$/MW-d)	(%)	(MWh)	(Hours)	(%)	(MW)	(MW)	(%)
Vertical Curve, Cap at 1.75x Net CONE (400 MWh EUE)	\$381	\$236	35%	400	1.3	103%	353	446	11%
Tuned Convex, Cap at 1.6x Net CONE	\$381	\$128	7%	402	1.3	105%	578	237	13%
Tuned Convex, Cap at 1.75x Net CONE	\$381	\$153	7%	402	1.3	105%	539	257	13%
Tuned Convex, Cap at 1.9x Net CONE	\$381	\$175	6%	400	1.3	105%	505	281	13%

- A vertical curve produces significant price volatility, with no change in procurement level
 - Vertical curve is perfectly inelastic
- Vertical curve is not robust to load forecast errors in resource adequacy modeling
- Price outcomes are heavily concentrated in the low % of Net CONE range & price cap
- Highly susceptible to market power exercise, since any change in volume can materially change price

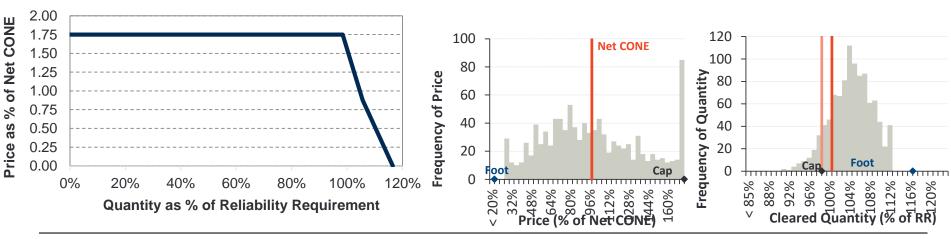

Demand Curve with Inflection Point Set at 1.0X Net CONE and 100% of the Reliability Target




Deeply Convex, Cap at 1.75x Net CONE (400 MWh EUE)

of Net CONE

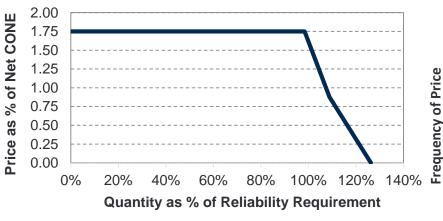
Price as %

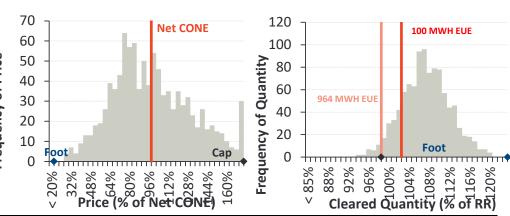

	Price						Reliability		
	Average	Standard Deviation	Frequency at Cap	Average EUE	Average LOLH	Average Quantity as % of	Average Excess (Deficit) Above	Average Uncleared	Frequency Below
Demand Curve	(\$/MW-d)	(\$/MW-d)	(%)	(MWh)	(Hours)	Rel. Req. <i>(%)</i>	Rel. Req. <i>(MW)</i>	Supply (MW)	Rel. Req. <i>(%)</i>
Deeply Convex, Cap at 1.75x Net CONE (400 MWh EUE)	\$382	\$94	6%	399	1.2	105%	599	212	16%
Tuned Convex, Cap at 1.6x Net CONE	\$381	\$128	7%	402	1.3	105%	578	237	13%
Tuned Convex, Cap at 1.75x Net CONE	\$381	\$153	7%	402	1.3	105%	539	257	13%
Tuned Convex, Cap at 1.9x Net CONE	\$381	\$175	6%	400	1.3	105%	505	281	13%

- With the inflection point at 1.0X Net CONE and 100% of the reliability target requires a deeply convex curve to meet reliability outcome
 - The foot is meaningfully wider and longer than the middle section, skews price outcomes to the foot
- Provides a very small buffer to errors in net CONE estimation and resource adequacy modeling
- Tends to procure more supply than a less convex curve
- Has a high frequency of occurrences below the reliability requirement
- The steepness of the curve above Net CONE is highly susceptible to market power exercise, like the vertical curve

Proposed 1.75X Net CONE Convex Curve: 400 MWh EUE

Tuned Convex, Cap at 1.75x Net CONE


		Price					Reliability		
	Average	Standard Deviation	Frequency at Cap	Average EUE	Average LOLH	Average Quantity as % of Rel. Reg.	Average Excess (Deficit) Above Rel. Reg.	Average Uncleared Supply	Frequency Below Rel. Reg.
Demand Curve	(\$/MW-d)	(\$/MW-d)	(%)	(MWh)	(Hours)	(%)	(MW)	(MW)	(%)
Tuned Convex, Cap at 1.75x Net CONE	\$381	\$153	7%	402	1.3	105%	539	257	13%
Tuned Convex, Cap at 1.6x Net CONE	\$381	\$128	7%	402	1.3	105%	578	237	13%
Tuned Convex, Cap at 1.75x Net CONE Tuned Convex, Cap at 1.9x Net CONE	\$381 \$381	\$153 \$175	7% 6%	402 400	1.3 1.3	105% 105%	539 505	257 281	13% 13%


- A slightly convex curve provides a robust range of price outcomes
 - Inflection point 5-6% above reliability requirement target level
- Reflects increasing value of capacity in times of scarcity
- · Width helps mitigates market power exercise
- Amount of time market clears below minimum reliability requirement a concern
- Provides a meaningful buffer to errors in net CONE and resource adequacy modeling

Proposed 1.75X Net CONE Convex Curve: 100 MWh EUE

Tuned Convex, Cap at 1.75x Net CONE (100 MWh EUE)

						Reliability			
	Average	Standard	Frequency	Average	Average	Average Quantity	Average Excess	Average	Frequency
		Deviation	at Cap	EUE	LOLH	as % of	(Deficit) Above	Uncleared	Below
						Rel. Req.	Rel. Req.	Supply	Rel. Req.
Demand Curve	(\$/MW-d)	(\$/MW-d)	(%)	(MWh)	(Hours)	(%)	(MW)	(MW)	(%)
Tuned Convex, Cap at 1.75x Net CONE (100 MWh EUE)	\$382	\$122	2%	100	0.2	108%	874	229	4%
Tuned Convex, Cap at 1.6x Net CONE	\$381	\$128	7%	402	1.3	105%	578	237	13%
Tuned Convex, Cap at 1.75x Net CONE	\$381	\$153	7%	402	1.3	105%	539	257	13%
Tuned Convex, Cap at 1.9x Net CONE	\$381	\$175	6%	400	1.3	105%	505	281	13%

- A 100 MWh EUE convex curve reduces the frequency below the minimum reliability requirement
- The foot of the 100 MWh EUE curve increases from 116% to 126% of reliability target
- Provides a relatively normal distribution of prices an quantities

Conclusions

- A downward-sloping, convex, demand curve is preferred to vertical curve
- Too much convexity can cause concentration of the price outcomes below Net CONE
- Very steep curves enable market power exercise
- Stakeholder concerns regarding over procurement in CMD 1.0 proposed curve
 - Proposed curve clears below minimum resource adequacy standard
 6.5% of iterations
- AESO continues to evaluate resource adequacy target and demand curve shapes
 - Continued feedback welcomed