

Dispatchable Renewables and Energy Storage

Dennis Frehlich, P. Eng., Senior Strategic Advisor

Stakeholder Session October 3, 2018

What we will cover today

- Objectives
- Approach
- Reliability needs
- Dispatchable renewables
- Energy storage
- Next steps and recommendations

Objectives

10/03/18 Public

Government of Alberta request

- By May 31, assess specific need for dispatchable renewables and energy storage (DR&S) as Alberta transitions toward 30% renewables by 2030
- If a system need is identified, determine if additional products or services are required and the market mechanisms to procure them
- Ensure recommendations are consistent with government's desired outcomes
 - Maintain or improve future reliability
 - Be cost-effective
 - Ensure minimal market impacts
 - Contribute toward meeting renewables generation target

AESO objectives

- Listen to and learn from others
- Understand Alberta's potential reliability implications of integrating 30% by 2030
- Directionally understand cost effectiveness of different technologies, dispatchable renewables and storage
- Identify and remove barriers to enable market participation and improve competition
- Remain agnostic to technology and project types

Approach

10/03/18 Public

AESO's review: six work streams

Broad stakeholder engagement

- 80+ responses to stakeholder questionnaire
- 30+ meetings with industry incumbents, key associations, project developers and Indigenous working group
- Comprehensive feedback helped define review scope
 - Jurisdictions to learn from
 - Perform a comparative cost/benefit analysis
 - Technology and project cost information used in AESO analysis
 - Identified barriers to DR&S technologies entering Alberta market
 - Noted desire for long-term contract arrangements

Jurisdictional review

14 regions

- A few nearing 30% penetration
- Some are setting 40%–60% targets
- Curtailments near 5%

Typical challenges

- Dispatchable flexibility to meet increasing variability
- Managing supply surpluses when renewables generating in low-demand periods

Flexibility options

- Regional coordination
- Load adjustment
- Renewable diversity, curtailment
- Existing resources and market products
- Storage

Understanding Reliability Implications to Achieve 30% by 2030

10/03/18 Publ

Several renewable integration needs were assessed

Variability and Flexibility

10/03/18 Publi

How did we assess our renewable integration needs to meet 30% by 2030?

Market simulation modelling assumptions

- '30 by 30' achieved with 6,200 MW of additional wind
 - Procured via Renewable Electricity Program
 - Bid energy in at \$0
 - Test bookend of high variability and market price volatility
- Two cases were simulated, providing different fleet flexibility
 - 2018-MCTG; 0.9% load growth; 2,400 MW coal-to-gas conversion
 - 2018-HCTG; 5,200 MW coal-to-gas conversion, less flexible fleet
- Other market drivers are based on most recent projections

Natural gas prices	\$1.50 - \$2.40GJ
Carbon tax	\$30/tCO2 rising to \$50/tCO2
Output-based allocation	Starting at 0.370 tCO2/MWh, declining post-2020

Market simulation assumptions aligned with evolving capacity market design

- Energy market
 - Large participants mitigated to 3x variable costs
- Ancillary Services market
 - New supply entrants can participate in operating reserves
- Capacity market
 - Capacity procured to meet government set reliability standard
 - Eligible resources participate based on UCAP estimates
 - Aero-derivative is the CONE reference technology
 - Demand curve is downward-sloping and convex
 - REP and "REP substitutes" not eligible to participate

Variability of <u>net demand</u> is needed to match with supply, all the time, reliably

Net Demand = Load - Variable Generation

Change in Net Demand (MW)											Total Change													
Line 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
— Line 2	50	25	125	150	175	25	15	235	125	50	100	50	10	15	20	145	175	75	100	100	25	25	20	1,835

Dispatch simulation uses historical patterns to create net demand profile

Load pattern

- Used 2015 historical load pattern after statistically testing 3 years (2014-2016)
- Hourly and minute level detail
- Scaled by minute to match future forecast hourly load (minimum, average and maximum within the hour)
- Variable wind generation pattern
 - Weather synchronized: wind generation correlated to load pattern
 - Incorporated geographical diversification effects of wind sites
 - Simulated for 120+ sites across the province
 - 10 minute resolution, provided by wind forecast firm
 - Used historical weather data and wind power output at existing sites

Effect of geographic diversity

Solar is predictable; wind...not as much

Is Alberta like California with a solar driven 'duck curve'?

Unlike California, Alberta has a wind driven 'spaghetti plot'

Net Demand profiles, one per day

Variability increases ~5% annually; tied to additional intermittent renewables

Net demand hourly ramps will grow in size and frequency; will need flexibility to manage

Dispatch simulation uses historical fleet average dispatch response and ramp rates

- New supply assets were assigned average fleet characteristics by technology type
- Dispatched resources up and down the energy market merit order to match net demand
- Any difference between energy dispatch and net demand is supplied by regulating reserves

		nerating Average	Generating Status Average					
Technology	Delay (min.)	Ramp Rate (MW/min.)	Delay (min.)	Ramp Down (MW/min.)	Ramp Up (MW/min.)			
Coal	3.0	2.2	2.4	4.6	4.5			
Combined Cycle	4.1	2.3	2.2	2.3	1.9			
Simple Cycle	6.8	13.6	2.5	10.6	10.0			
Cogeneration	3.1	2.6	2.4	3.8	2.8			

Reliability remains acceptable as '30 x 30' target level is achieved

- Transmission development plans will reliably accommodate renewable integration
- Energy and ancillary services markets will provide flexibility needed
- Key reliability metrics remain within acceptable ranges for both scenarios

Scenario	CPS2 (> 90)	SOL (<5)	Large ACE (proactive indicator)
MCTG	98.5 to 99.9	0 to 1	0 to 11
нств	98.9 to 99.9	0 to 2	0 to 18

Supply surpluses? Potentially, but less than 1% of renewables

Dispatchable Renewables

10/03/18 Publi

What <u>directionally</u> is the cost/benefit of dispatchable renewables?

FIGURE 11: Comparative scenario analysis approach

FIGURE 12: Substitution cases

	Run-of-river Hydro	Biomass	Geothermal	
Out attention Or a	250 MW	250 MW	250 MW	
Substitution Case Inputs	500 MW	500 MW	500 MW	
iliputs	1,000 MW	1,000 MW	1,000 MW	

Renewable asset mix meets 30% by 2030 across simulation scenarios

6,200 MW of wind capacity added by 2030, totaling 7,640 MW

Different levels of wind were replaced, based on these capacity factors:

Wind = 34%

Biomass/Geothermal = 92%

Run-of-river hydro (managed system) = 78%

Three cost categories included in the comparison

- Market costs (ratepayer)
 - Costs incurred in the energy, capacity and ancillary service markets
 - Less capacity to procure, depending on the capacity quality of the substitute
- Emission costs (within market costs)
 - \$50/tonne applied to carbon emissions produced from the energy market
 - Provided separately to see the carbon emissions impact of different scenarios
- REP proxy costs (carbon levy)
 - "REP like" costs incurred to procure the dispatchable renewable out of market
 - Use the levelized cost of energy (LCOE) as the proxy strike price in a contract-for-difference payment structure
 - For every hour, calculate the REP proxy costs comparing the pool price to the strike price

Broad range of LCOEs assessed in REP proxy cost analysis

	Capital Cost	Operating Cost	LCOE (2017 25-year Finar	Capital Cost Share of LCOE	
	2017 \$/kW	2017 \$/MWh	Long-term Contract (4.3%)	Merchant (8.2%)	(%)
	1,250	14	42	55	
Wind	1,400	14	46	60	67% - 79%
	1,600	14	50	66	
	4,000	10	50	67	
Run of River	6,500	10	74	103	
Hydro	8,000	10	89	124	79% - 95%
113413	9,750	10	107	149	
	13,000	10	139	195	
	4,750	75	115	132	
Biomass	5,000	75	117	135	35% - 47%
	5,600	75	122	142	
	7,677	12	80	109	
Geothermal	9,801	12	98	136	85% - 93%
	13,842	12	134	188	

LCOE ranges incorporate various cost risks including capacity factor, technology, financial life and construction

Note: levelized cost estimates based on 25 year life, unless noted otherwise

CF = capacity factor

Higher pool prices occur in substitution cases

Wind Generation by Price Range (Year = 2026)

Substitution cases are higher cost, at 4.3% or 8.2% ATWACC

Hydro LCOEs are sensitive to capacity factor assumptions – even with a 50-year life

LCOE Sensitivity based on Capacity Factor 25-yr vs 50-yr Financial Life (4.3% ATWACC)

Hydro REP proxy costs correspond to capacity factor and financial life assumptions

50-year life REP proxy cost ranges: \$1.5-\$4.4B at 78% CF; \$4.8-\$14.6B at 25% CF

Transmission interconnections may further increase costs, depending on project location/size

Energy Storage

10/03/18 Public

What is the role for energy storage in Alberta's markets?

We did not assess "wires deferral" or "customer bill" related benefits

Performed a wide range of storage scenarios

Technologies

- Lithium-ion batteries: 2-hour, 4-hour and 12-hour
- Pumped storage hydro: 6-hour and 12-hour

Market Conditions

- Future Alberta generation mix: moderate vs high coal conversion, no intertie
- Saturation: effect of increased storage on operating reserve and pool prices

Cost Projections

- Technology uncertainty: range of potential costs for batteries and pumped storage
- Cost changes by year of installation:
 2021 and 2025

Storage may be cost-effective in operating reserve market, with no transmission tariff costs

1 MW, 4-hour Lithium-Ion Battery (2021 Installation, 25 Year Present Value with 8.2 % Discount Rate)

Capacity market expected to narrow average daily energy price spreads in the future

Operating reserve market provides 70% of revenues; energy price arbitraging not very cost-effective

1 MW, 4-hour Lithium-Ion Battery With and Without Regulating Reserve Revenue (2021 Installation, 25 Year Present Value with 8.2 % Discount Rate)

If storage enters operating reserve market, it is expected to drive prices down

4-hour Lithium-Ion Battery; 2021 Installation

*Note: Results above exclude transmission tariff cost

AESO-estimated impact of 50 MW saturation on reserve prices (during peak/offpeak hours):

Regulating: -40% / -88%

Spinning: -14% / -32%

Supplemental: -43% / -52%

Larger storage projects will likely be less cost-effective

12-Hour Pumped Storage Hydro

(assuming 50 MW price saturation in regulating and contingency reserve markets)

Storage duration beyond two hours provides diminishing incremental value in Alberta

1 MW Storage; 2021 Install (excludes operating reserve revenue opportunities)

Directional energy price spreads needed to cover storage costs from energy arbitraging

Figure 12: Implied Present Value of 2, 4 and 12-hour Duration Storage used for Energy Arbitrage as a Function of Average Daily Price Spread

Base cost range for 12+ hour pumped storage hydro facility: \$2500-4000 per kw

4-hour Li-lon battery cost range for 2021 install: \$1400-2000 per kw

2-hour Li-lon battery cost range for 2021 install: \$825-1200 per kw

Average Daily Price spread in CAD per MWh (charging hours vs. discharging hours)

*Note: Chart excludes storage operating & maintenance costs & potential capacity market revenue: these excluded items may offset each other. Transmission tariff cost also excluded.

Fleet supply mix has marginal effect on results aeso

1 MW, 4-hour Lithium-Ion Battery; 2021 installation year

*Note: Excludes transmission tariff cost

Battery storage costs are declining; the pace of the cost curve decline is uncertain

1 MW, 4-hour Lithium-Ion Battery

Key energy storage findings

- Transmission tariff likely to be a material cost for storage
- Smaller sizes and volume of storage (<50 MW) may be cost-effective, primarily in the ancillary services market
- Larger sizes and volumes of storage (>50 MW) unlikely to be cost-effective due to insufficient energy price spreads
- Storage will be able to participate in the capacity market
- As energy storage costs continue to fall, future cost curves will drive the level of market penetration

Summary and Recommendations

10/03/18 Publi

Reliable, renewable, affordable, and market aligned

RELIABLE

- Reliability maintained at 30% x 2030
- Existing and planned transmission will enable renewables to connect
- Generation surpluses to be <1% of renewable energy (<0.3% total energy)
- Reaffirms no reliability concerns with coal phase-out

RENEWABLE

- 30% x 2030 achievable
- REP achieves best \$/tonne carbon reduction

AFFORDABLE

- Wind is currently the least-cost renewable
- Capacity market reduces price volatility and value of storage

MARKET ALIGNMENT Flexibility and supply surplus not forecast to create material market impacts

Recommendations

- CLP and REP have placed Alberta on a reliable path to attain the renewable energy target without any additional products or services
- AESO will develop two roadmaps, with industry engagement, to assess ongoing flexibility needs and integrate storage as technologies advance
 - AESO will monitor DR&S as costs are expected to decline in the future

Next Steps

10/03/18 Public

Predicting the future is tricky

Energy storage – a roadmap

Enable competition

Storage as an option

Engage stakeholders

Tariffs
Hybrid assets
Market rules
Integration

Future flexibility – a roadmap

Assess need and capability

Enable future capability

Engage stakeholders

Existing asset capability

Remove barriers

Enhance forecasting, dispatching

Assess pricing signals

AESO's next steps

- **Energy Storage Roadmap**
 - AESO will lead the development
 - Create an Energy Storage Stakeholder Group in October/November
 - Integrate with other action already underway
- Flexibility Roadmap
 - AESO will lead the development
 - Energy and Ancillary Services roadmap already progressing some elements of the Flexibility Roadmap
 - Integrate with other action already underway
- Open to additional feedback or questions on report
 - Contact dennis.frehlich@aeso.ca

Questions?

10/03/18 Public

